Gap Analysis Cheat Sheet (aka Dual Discrepancy Analysis)

Typical ROI $=($ Benchmark Time $2-$ Benchmark Time 1) / (\# Weeks)
Target ROI $=($ Benchmark Time $2-$ Student's Present Benchmark) / (\# Weeks)

Attained ROI = (Student's Performance Time 2 - Student's Performance Time 1) / (\# Weeks)
*Notes:
1.) A typical school year is 36 weeks (18 weeks for a semester / half year).
2.) Contemporary research (e.g., Ardoin \& Christ, 2008; Christ, Silberglitt, Yeo, \& Cormier, 2010) indicates a seasonal difference in Fall-Winter slope compared to Winter-Spring slope.
3.) Best method for calculating attained ROI using progress monitoring data is via Ordinary Least Squares trendline (Shapiro, 2008)

Example: 3rd Grade DIBELS Next

Miles Davis ORF in Sept $=40 \quad$ Miles Davis ORF in May $=71$
Benchmark ORF in Sept $=70 \quad$ Benchmark ORF in April $=100$
Typical ROI from 70 to 100 in 36 weeks $=(100-70) / 36=\underline{0.83}$ wcpm/week
Target ROI from 40 to 100 in $36=(100-40) / 36=\underline{1.67} \mathrm{wcpm} /$ week
Attained ROI from 40 to 71 in 36 weeks $=(71-40) / 36=\underline{0.86} \mathrm{wcpm} /$ week

Gap Analysis

Level Discrepancy Analysis = Benchmark / Attained = discrepancy (How Low is Low?)
$\begin{aligned} \text { Performance Against Typical }= & \begin{array}{l}\% \text { Expected Performance }=100-(((\text { Benchmark }- \text { Attained }) / \\ \\ \text { Benchmark }) * 100)\end{array}\end{aligned}$
ROI Benchmark Discrepancy $=$ Target ROI / Attained ROI = discrepancy
(How Slow is Slow?)
Rate Against Target $=\quad$ \% Targeted Growth = 100-(((Target ROI - Attained ROI) / Target ROI) * 100)

ROI Discrepancy Analysis = Typical ROI / Attained ROI = discrepancy
Rate Against Typical = \quad \% Typical Growth $=100-(($ Typical ROI - Attained ROI) $/$ (Typical ROI) * 100)

	Example: 3rd Grade DIBELS Next
Miles Davis ORF in Sept $=40$	Miles Davis ORF in May $=71$
Benchmark ORF in Sept $=70$	Benchmark ORF in May $=100$
Typical ROI $=0.83$	Target ROI $=1.67 \quad$ Attained ROI $=0.86$
Level Discrepancy Analysis $=$	(May Data) $100 / 71=\underline{1.41}$
(How Low is Low?)	
Interpretation: Lena's level is 1.41 X below the typical student	
Performance Against Typical $=$	$\%$ Expected Performance $=100-(((100-71) /$
	$100) * 100)=\underline{71 \%}$

Interpretation: Mile's performance is 71\% of the typical student in 3rd grade
ROI Benchmark Discrepancy $=1.67 / 0.86=\underline{\mathbf{1 . 9 4}}$
(How Slow is Slow?)
Interpretation: Mile's ROI is 1.94 X below his needed growth rate to reach benchmark
Rate Against Target $=\quad$ \% Targeted Growth $=100-(((1.67-0.86) / 1.67) * 100)=\underline{51.5 \%}$
Interpretation: Mile's ROI is 51.5% of his targeted growth to met benchmark inMay.
ROI Discrepancy Analysis $=\quad 0.83 / 0.86=\underline{0.97 x}$
Interpretation: Mile's ROI is 0.97 X faster than the typical student; He is moving faster than typical student

Rate Against Typical = $\%$ Typical Growth $=100-(((0.83-0.86) /(0.83) * 100)=\underline{103.6 \%}$

Interpretation: Mile's ROI is 103.6% of the typical student's ROI (faster than typical)

So two Questions remain:
1.) How low is low?
2.) How slow is slow?

