UNDERSTANDING RTI IN MATHEMATICS

Session 1: RTI in Math
in the Context of the Common Core

New York State Webinars on RTI Mathematics
Tuesday, November 18, 2014
4:00 – 5:15 pm EST

Russell Gersten, Ph.D.
Director, Instructional Research Group
Professor Emeritus, University of Oregon
<table>
<thead>
<tr>
<th>Webinar Title</th>
<th>Date/Time</th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>RtI in Math in the Context of the Common Core</td>
<td>Tuesday, November 18(^{th}) 4:00-5:15 pm EST</td>
<td>• Effective Core Instruction in Mathematics</td>
</tr>
<tr>
<td>RtI Principles and evidence base (con)</td>
<td>Tuesday, November 25(^{th}) 4:00-5:15 pm EST</td>
<td>• Key Principles of RtI and Mathematics</td>
</tr>
<tr>
<td>Why start early with RtI?</td>
<td></td>
<td>• Importance of mathematics growth in K and 1</td>
</tr>
<tr>
<td>Universal Screening</td>
<td></td>
<td>• Importance of fractions for success in algebra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Tools and measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Using Screening Data to Determine Who’s At-risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Roadblocks & Suggestions</td>
</tr>
</tbody>
</table>
TOPICS FOR WEBINAR SESSIONS 3 & 4

<table>
<thead>
<tr>
<th>Webinar Title</th>
<th>Date/Time</th>
<th>Agenda</th>
</tr>
</thead>
</table>
| Effective Instruction Practices in Mathematics for Tier 2 and Tier 3 Instruction | Tuesday, December 2nd 4:00-5:15 pm EST | • What to Teach
• Nature of Instruction: Controversies and what we know about the nature of explicit instruction
• Intervention Materials/Resources
• Roadblocks & Suggestions |
| Progress Monitoring and its Use in intensive intervention | Tuesday, December 9th 4:00-5:15 pm EST | • Progress monitoring tools
• Measures
• Frequency
• Using PM Data to Determine Response |
POLL ITEM 1:
WHICH STATEMENT BEST TYPIFIES YOU?

1. I love mathematics
2. I like mathematics
3. I can live with it or without it.
Tier I is defined differently by experts.

Only common feature:
1. Universal screening of all students

Other possible components:
1. Ongoing professional development for classroom teachers on how to use research
2. Differentiated instruction
3. High quality mathematics instruction
4. Scientifically based mathematics instruction
1. Tier II is individual or small-group intervention in addition to the time allotted for core mathematics instruction.

2. Tier II includes curriculum, strategies, and procedures designed to supplement, enhance, and support Tier I.

3. Can backtrack and/or elaborate/reinforce classroom curriculum.

4. Progress monitoring of students “at-risk” on a monthly or weekly basis.
EFFECTIVE CORE (TIER 1) IN MATHEMATICS IN THE ERA OF THE COMMON CORE

Beyond the Math Wars

Instructional Research Group
1. RtI mathematics is relatively new

2. There are many divergent views

3. Goal here is to understand perspectives but also learn about the evidence base

4. Thus, a good deal of Session 1 will focus on evidence base and what it means

5. Will present a vision of effective explicit instruction that should be useful for Tier 1 and Tiers 2 and 3.
GOALS OF THE SESSION

1. Provide a framework for understanding effective Tier 1 practice.
2. Introduce current research on Tier 1 mathematics and its limitations.
3. Elucidate areas of tension, confusion, void of evidence.
4. Provide an overview of the current evidence base
5. Ultimate goal: Understanding RtI in mathematics
POLL QUESTION 2: WHICH BEST DESCRIBES YOUR ROLE?

1. RtI specialist or coordinator
2. Mathematics teacher
3. Classroom teacher
4. Special education teacher
5. School psychologist
6. Interventionist
7. Other
1. Students need to understand reasons for procedures
 - orally,
 - in writing,
 - through diagrams/visual representations

This sets the stage for students being ability at mathematical proof and discussions of mathematical ideas.
Link between arithmetic and algebra explicit

1. Algebra is a general case of arithmetic (in the view of many mathematicians)– ongoing work is to develop this insight

2. Much of arithmetic is extension of commutative, associate and distributive properties of addition and multiplication– much of the work is to develop these insights

3. Heavy emphasis on demonstrating understanding

4. Heavy emphasis on visual models and graphic models
1. Covers fractions more than 1 and less than 1 concurrently

2. Word problems integrated with symbols/operations from the start

3. Ideas (concepts) and procedures linked

4. Major stress on number line

5. KEY ISSUE: how to teach???
WHY ARE FRACTIONS SO HARD?

1. Numbers of the same magnitude can look different (e.g., ¾ and 9/12)

2. Sometimes, when numerals get bigger, the fraction gets smaller (1/4, 1/6, 1/8)

3. Not always the case, however (2/4 < 6/7)

4. Infinite amount of numbers between 2 fractions.
...But in what many experts are calling one of the biggest shifts associated with the **Common Core State Standards for mathematics**, more teachers are now being asked to emphasize fractions as points on a number line, rather than just parts of a whole, to underscore their relationships to integers.

Source: Heitan, L. (2014). http://www.edweek.org/ew/articles/2014/11/12/12cc-fractions.h34.html
BARRIERS

1. Most of us are asked to teach mathematics differently than how we learned it.

2. Some teachers lack the knowledge of the mathematical ideas and concepts required by Common Core... especially in fractions and geometry.
HOW TO DEVELOP THESE INSIGHTS AND UNDERSTANDINGS THAT ARE STRESSED IN COMMON CORE?

1. Asking students to explain reasoning
 AND
2. Build proficiency with arithmetic computations
3. Some research to guide us:
 ✓ Research by Ken Koedinger and colleagues
HOW TO DEVELOP THIS LEVEL OF PROFICIENCY

1. Instruction includes:
 ✓ procedures
 ✓ AND concepts
 ✓ AND word problems

 This is a reciprocal relationship.

2. Whole number work consistently links operations to number properties

3. Same true for work with rational number (fractions/decimals)
BRIEF SET OF INSIGHTS FROM EXPERIMENTAL COGNITIVE PSYCHOLOGY

1. May be good idea to teach procedure/algorithm one day and focus on ideas and visual representations on alternate days (e.g. work of Rittle Johnson and Koedinger on linear equations)

2. May be good idea to expeditiously use manipulatives even in middle school (e.g. research of Brad Witzel and Paul Riccomini)
In which of the following are the three fractions arranged from least to greatest?

A. \(\frac{5}{9}, \frac{1}{2}, \frac{2}{7} \)

B. \(\frac{5}{9}, \frac{2}{7}, \frac{1}{2} \)

C. \(\frac{2}{7}, \frac{1}{2}, \frac{5}{9} \)

D. \(\frac{1}{2}, \frac{2}{7}, \frac{5}{9} \)

E. \(\frac{1}{2}, \frac{5}{9}, \frac{2}{7} \)
1. Many American students are unable to solve fractions problems in middle or even high school.

 ✓ Example: NAEP Grade 8 in 2007: Pass rate = 49%

2. Most think that the reason for poor performance on these items is that students never understood the mathematical ideas relating to fractions.
Standard 4.NF.3:

Understand a fraction a/b with $a > 1$ as a sum of fractions $1/b$.

a. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.
STRIP DIAGRAMS (AKA FRACTION STRIPS, FRACTIONS TILES) CAN BE USED DEMONSTRATES APPROPRIATE MATHEMATICAL MODELS
EXAMPLE

1. Assignment: Use the lowest common denominator when appropriate

\[\frac{1}{2} + \frac{1}{3} = \]

2. Student Response

\[\frac{1}{2} + \frac{1}{3} = \frac{2}{5} \]
STRIP DIAGRAMS HELPS WITH UNDERSTANDING OF FRACTIONS
EXPEDITIOUS USE OF CONCRETE OBJECTS TO ENSURE STUDENTS UNDERSTAND VISUAL REPRESENTATIONS

Concrete

Visual Representations

Area model for 3/7
Area model for 4/7

Partitive model for 3/7
Partitive model for 4/7

Line model for 4/7
Line model for 3/7
RECAP: GOALS

Core instruction must allow students to

1. demonstrate understanding
2. use visual models
3. solve problems in more than one way

Goal is, in part, to develop insights into mathematical ideas, the ideas that are foundational to algebra (and geometry and measurement)
RECAP: HOW TO DO IT (1)

1. Frequent use of visual representations especially number line
2. Strip diagrams are a great tool for helping students transition to number line.
3. Expeditious use of manipulatives also a great tool.
4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
5. Integration of word problems
6. Frequent teacher think alouds
7. Explicit instruction that helps create the links
8. Students given many opportunities to demonstrate understanding/explain
POLL QUESTION: WHICH IS GREATEST CHALLENGE FOR YOU OR YOUR SCHOOL?

1. Frequent use of visual representations especially number line
2. Strip diagrams are a great tool for helping students transition to number line.
3. Expeditious use of manipulatives also a great tool.
4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
5. Integration of word problems
6. Frequent teacher think alouds
7. Explicit instruction that helps create the links
8. Students given many opportunities to demonstrate understanding/explain
VIDEO EXAMPLE OF EXPLICIT INSTRUCTION

1. Links to visual representations and concrete representations
2. Thinking aloud
3. Note how different this is than modeling a procedure

NB: This is a simulation so there are no students
What does research have to say about effective Tier 1 mathematics instruction?
1. A study of direct observation of one day’s of mathematics instruction (on average 1 hour 10 minutes) in

First grade: Almost 4000 students in 364 classrooms

Second grade: Almost 3000 students in 269 classrooms throughout U.S.

✓ A national sample
✓ Curricula used included a wide range (Saxon, Investigations, Mathematics Expressions, Scott Foresman)
✓ All Title I

WHAT THEY FOUND

For first grade, two practices linked with higher mathematics proficiency:
1. Teachers telling students the strategy to use in response to students’ work or answers
2. Higher percentage of math instructional time spent in a large-group instruction

For second grade:
3. Teachers asking the class if it agrees with a student’s answer
4. Number of representations that teachers demonstrate
5. Students help one another understand math concepts or procedures

BUT TWO LED to DECREASES:
6. Teachers eliciting multiple strategies or solutions
7. Teachers prompting a student to guide practice or lead the class in a routine

Note: Red means linked to earlier discussion
POLL: WHICH FINDING MOST SURPRISING

1. Frequent use of visual representations especially number line
2. Strip diagrams are a great tool for helping students transition to number line.
3. Expeditious use of manipulatives also a great tool.
4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
5. Integration of word problems
6. Frequent teacher think alouds
7. Explicit instruction that helps create the links
8. Students given many opportunities to demonstrate understanding/explain
CAVEATS

This was not a study of **quality** of each teaching practice.

Research looked at **quantity** of each

Yet, these do provide food for thought.

1. Morgan et al. looked at factors in Tier 1 in first grade that increased achievement of students in the at risk category. These findings have some relevance for RtI.

2. Database was nationally representative.

3. Here, teaching practice was from teacher report not direct observation.
When researchers statistically adjusted for pretest score and demographic factors,

1. These students did better when teacher-directed practices were used.
 ✓ In particular, when teachers did what they called “routine drill and practice”.
 ✓ As with earlier study, effects were not large (effect size of .05-07) or a few percentile points, on average.

2. Classes with a good deal of use of manipulatives, calculators or music tended to produce more students in the at-risk category.
1. For students not considered at risk, both teacher-directed and student-centered practices were helpful.

2. This suggests:

 ✓ Neither all inquiry nor all teacher-directed works best for all.

 ✓ At-risk learners need more explicit instruction and more practice than others.

RECAP WITH RESEARCH INTEGRATED

1. Mix of teacher-directed and student-centered (peer or group activities) instruction seems optimal for average students.

2. Explicit instruction can, and should, include think alouds.

3. Integration of work on mathematical ideas/concepts and procedures (e.g. computation).

4. All instruction (explicit and student activities) should include frequent use of a small set of visual representations especially number line.

5. Strip diagrams are a great tool for helping students transition to number line.

6. Integration of word problems with work on mathematical ideas-can be back to back lessons- think alouds or problems assigned can be the links.

7. Students given many opportunities to demonstrate understanding/explain.

8. Especially for students in at-risk category plenty of practice necessary to ensure fluent and proficient calculation proficiency and to ensure that mathematical ideas are understood.
1. Most of this is relevant to intervention

Food for thought: How much to link intervention (Tier 2 especially) to grade level content?
<table>
<thead>
<tr>
<th>Webinar Title</th>
<th>Date/Time</th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>RtI Principles and evidence base (con)</td>
<td>Tuesday, November 25<sup>th</sup> 4:00-5:15 pm EST</td>
<td>• Key Principles of RtI and Mathematics</td>
</tr>
<tr>
<td>Why start early with RtI?</td>
<td></td>
<td>• Importance of mathematics growth in K and 1</td>
</tr>
<tr>
<td>Universal Screening</td>
<td></td>
<td>• Importance of fractions for success in algebra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Tools and measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Using Screening Data to Determine Who’s At-risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Roadblocks & Suggestions</td>
</tr>
</tbody>
</table>
HTTP://IES.ED.GOV/NCEE/WWC/PRACTICEGUIDE.ASPX?SID=2
OR GOOGLE PRACTICE GUIDE