UNDERSTANDING RTI IN MATHEMATICS

Session 1: RTI in Math in the Context of the Common Core

New York State Webinars on RTI Mathematics Tuesday, November 18, 2014 4:00-5:15 pm EST

Russell Gersten, Ph.D.
Director, Instructional Research Group Professor Emeritus, University of Oregon

Instructional Research Group

TOPICS FOR WEBINAR SESSIONS 3 \& 4

Webinar Title	Date/Time	Agenda
Effective Instructional Practices in Mathematics for Tier 2 and Tier 3 Instruction	Tuesday, December $2^{\text {nd }}$ 4:00-5:15 pm EST	- What to Teach - Nature of Instruction: Controversies and what we know about the nature of explicit instruction - Intervention Materials/Resources - Roadblocks \& Suggestions
Progress Monitoring and its Use in intensive intervention	Tuesday, December $9^{\text {th }}$ 4:00-5:15 pm EST	- Progress monitoring tools - Measures - Frequency - Using PM Data to Determine Response

Instructional Research Group

TIER I: CORE CLASS INSTRUCTION

TOPICS FOR WEBINAR SESSIONS 1 \& 2

POLL ITEM 1: WHICH STATEMENT BEST TYPIFIES YOU?

1. I love mathematics
2. I like mathematics
3. I can live with it or without it.

4. Tier II is individual or small-group intervention in addition to the time allotted for core mathematics instruction.
5. Tier II includes curriculum, strategies, and procedures designed to supplement, enhance, and support Tier I.
6. Can backtrack and/or elaborate/reinforce classroom curriculum.
7. Progress monitoring of students "atrisk" on a monthly or weekly basis.
Instructional Research Group

EFFECTIVE CORE (TIER 1) IN MATHEMATICS IN THE ERA OF THE COMMON CORE

Beyond the Math Wars

GOALS OF THE SESSION

1. Provide a framework for understanding effective Tier 1 practice.
2. Introduce current research on Tier 1 mathematics and its limitations.
3. Elucidate areas of tension, confusion, void of evidence.
4. Provide an overview of the current evidence base
5. Ultimate goal: Understanding Rtl in mathematics
6. Rtl specialist or coordinator
7. Mathematics teacher
8. Classroom teacher
9. Special education teacher
10. School psychologist
11. Interventionist
12. Other

POLL QUESTION 2: WHICH BEST DESCRIBES YOUR ROLE?

1. Rtl mathematics is relatively new
2. There are many divergent views
3. Goal here is to understand perspectives but also learn about the evidence base
4. Thus, a good deal of Session 1 will focus on evidence base and what it means
5. Will present a vision of effective explicit instruction that should be useful for Tier 1 and Tiers 2 and 3.

THE COMMON CORE IN A NUTSHELL

1. Students need to understand reasons for procedures
\checkmark orally,
\checkmark in writing,
\checkmark through diagrams/visual representations

This sets the stage for students being ability at mathematical proof and discussions of mathematical ideas.

THE COMMON CORE IN A NUTSHELL (1)

Link between arithmetic and algebra explicit

1. Algebra is a general case of arithmetic (in the view of many mathematicians)- ongoing work is to develop this insight
2. Much of arithmetic is extension of commutative, associate and distributive properties of addition and multiplication- much of the work is to develop these insights
3. Heavy emphasis on demonstrating understanding
4. Heavy emphasis on visual models and graphic models

LIFE ON THE NUMBER LINE

Instructional Research Group
${ }^{13}$

COMMON CORE IN A NUTSHELL (2)

1. Covers fractions more than 1 and less than 1 concurrently
2. Word problems integrated with symbols/operations from the start
3. Ideas (concepts) and procedures linked
4. Major stress on number line
5. KEY ISSUE: how to teach???

APPROACH TO FRACTIONS SEEN AS KEY SHIFT IN COMMON STANDARDS

..But in what many experts are calling one of the biggest shifts associated with the Common Core State Standards for mathematics, more teachers are now being asked to emphasize fractions as points on a number line, rather than just parts of a whole, to underscore their relationships to integers.

Source: Heitan, L. (2014).
http://www.edweek.org/ew/articles/2014/11/12/12cc-fractions.h34.html

BARRIERS

1. Most of us are asked to teach mathematics differently than how we learned it.
2. Some teachers lack the knowledge of the mathematical ideas and concepts required by Common Core... especially in fractions and geometry.

HOW TO DEVELOP THESE INSIGHTS AND UNDERSTANDINGS THAT ARE STRESSED IN COMMON CORE?

1. Asking students to explain reasoning

AND
2. Build proficiency with arithmetic computations
3. Some research to guide us:
\checkmark Research of Bob Siegler and colleagues: e.g. RittleJohnson, B., Siegler, R. S., \& Alibali, M. W. (2001).
\checkmark Research by Ken Koedinger and colleagues

HOW TO DEVELOP THIS LEVEL OF PROFICIENCY

1. Instruction includes:
\checkmark procedures
\checkmark AND concepts
\checkmark AND word problems
This is a reciprocal relationship.
2. Whole number work consistently links operations to number properties
3. Same true for work with rational number (fractions/decimals)

Instructional Research Group

STRIP DIAGRAMS (AKA FRACTION STRIPS, FRACTIONS TILES) CAN BE USED DEMONSTRATES APPROPRIATE MATHEMATICAL MODELS

EXAMPLE

1. Assignment: Use the lowest common denominator when appropriate

$$
1 / 2+1 / 3=
$$

2. Student Response

$$
1 / 2+1 / 3=2 / 5
$$

STRIP DIAGRAMS HELPS WITH UNDERSTANDING OF FRACTIONS

EXPEDITIOUS USE OF CONCRETE OBJECTS TO ENSURE STUDENTS UNDERSTAND VISUAL REPRESENTATIONS

RECAP: HOW TO DO IT (1)

1. Frequent use of visual representations especially number line
2. Strip diagrams are a great tool for helping students transition to number line.
3. Expeditious use of manipulatives also a great tool.
4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
5. Integration of word problems

RECAP: HOW TO DO IT(2)

6. Frequent teacher think alouds
7. Explicit instruction that helps create the links
8. Students given many opportunities to demonstrate understanding/explain

POLL QUESTION: WHICH IS GREATEST CHALLENGE FOR YOU OR YOUR SCHOOL?

Frequent use of visual representations especially number line
2. Strip diagrams are a great tool for helping students transition to number line.
3. Expeditious use of manipulatives also a great tool.
4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
5. Integration of word problems
6. Frequent teacher think alouds
7. Explicit instruction that helps create the links
8. Students given many opportunities to demonstrate understanding/explain

CORE MATHEMATICS INSTRUCTION

What does research have to say about effective Tier 1 mathematics instruction?

WHAT THEY FOUND

For first grade, two practices linked with higher mathematics proficiency:

1. Teachers telling students the strategy to use in response to students' work or answers
2. Higher percentage of math instructional time spent in a large-group instruction For second grade:
3. Teachers asking the class if it agrees with a student's answer
4. Number of representations that teachers demonstrate
5. Students help one another understand math concepts or procedures

BUT TWO LED to DECREASES:

6. Teachers eliciting multiple strategies or solutions
7. Teachers prompting a student to guide practice or lead the class in a routine

Note: Red means linked to earlier discussion

VIDEO EXAMPLE OF EXPLICIT INSTRUCTION

1. Links to visual representations and concrete representations
2. Thinking aloud
3. Note how different this is than modeling a procedure

NB: This is a simulation so there are no students

DIRECT OBSERVATION STUDY

1. A study of direct observation of one day's of mathematics instruction (on average 1 hour 10 minutes) in

First grade: Almost 4000 students in 364 classrooms Second grade: Almost 3000 students in 269 classrooms throughout U.S.
\checkmark A national sample
\checkmark Curricula used included a wide range (Saxon, Investigations, Mathematics Expressions, Scott Foresman)
\checkmark All Title I
Source: Clements, D. H., Agodini, R., \& Harris, B. (2013)
Instructional Research Group

POLL: WHICH FINDING MOST SURPRISING

1. Frequent use of visual representations especially number line
2. Strip diagrams are a great tool for helping students transition to number line.
3. Expeditious use of manipulatives also a great tool.
4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
5. Integration of word problems
6. Frequent teacher think alouds
7. Explicit instruction that helps create the links
8. Students given many opportunities to demonstrate understanding/explain

CAVEATS

This was not a study of quality of each teaching practice.

Research looked at quantity of each Yet, these do provide food for thought.

FINDINGS

When researchers statistically adjusted for pretest score and demographic factors,

1. These students did better when teacher-directed practices were used.
\checkmark In particular, when teachers did what they called "routine drill and practice".
\checkmark As with earlier study, effects were not large (effect size of .05-07) or a few percentile points, on average.
2. Classes with a good deal of use of manipulatives, calculators or music tended to produce more students in the at-risk category.

RECAP WITH RESEARCH INTEGRATED

1. Mix of teacher-directed and student-centered (peer or group activities) instruction seems optimal for average students.
2. Explicit instruction can, and should, include think alouds.
3. Integration of work on mathematical ideas/concepts and procedures (e.g. computation).
4. All instruction (explicit and student activities) should include frequent use of a small set of visual representations especially number line.
5. Strip diagrams are a great tool for helping students transition to number line.
6. Integration of word problems with work on mathematical ideas-can be back to back lessons- think alouds or problems assigned can be the links.
7. Students given many opportunities to demonstrate understanding/explain.
8. Especially for students in at-risk category plenty of practice necessary to ensure fluent and proficient calculation proficiency and to ensure that mathematical ideas are understood.

NEXT WEEK

Webinar Title	Date/Time	Agenda
RtI Principles and evidence base (con) Why start early with RtI? Universal Screening	Tuesday, November $25^{\text {th }}$ 4:00-5:15 pm EST	- Key Principles of RtI and Mathematics - Importance of mathematics growth in K and 1 - Importance of fractions for success in algebra - Screening \checkmark Tools and measures \checkmark Using Screening Data to Determine Who's At-risk - Roadblocks \& Suggestions

HTTP://IES.ED.GOV/NCEE/WWC/PRACTICEGUIDE.ASPX?SID=2 OR GOOGLE PRACTICE GUIDE

