UNDERSTANDING RTI IN MATHEMATICS	TOPICS FOR WEBINAR SESSIONS 1 &		
	Webinar Title	Date/Time	Agenda
Session 1: RTI in Math	Context of the Common	Tuesday, November 18 th 4:00-5:15 pm EST	Effective Core Instruction in Mathematics
in the Context of the Common Core	evidence base (con)	Tuesday, November 25 th 4:00-5:15 pm EST	 Key Principles of RtI and Mathematics Importance of mathematics
New York State Webinars on RTI Mathematics Tuesday, November 18, 2014	Why start early with Rtl?		growth in K and 1 Importance of fractions for
4:00 – 5:15 pm EST	Universal Screening		success in algebra Screening
Russell Gersten, Ph.D. Director, Instructional Research Group			 ✓ Tools and measures ✓ Using Screening Data to Determine Who's At-risk
Professor Emeritus, University of Oregon			Roadblocks & Suggestions
Instructional Research Group		Instructional Resear	rch Group

GOALS OF THE SESSION

- 1. Provide a framework for understanding effective Tier 1 practice.
- 2. Introduce current research on Tier 1 mathematics and its limitations.
- 3. Elucidate areas of tension, confusion, void of evidence.
- 4. Provide an overview of the current evidence base
- 5. Ultimate goal: Understanding Rtl in mathematics

Instructional Research Gro

POLL QUESTION 2: WHICH BEST DESCRIBES YOUR ROLE?

- 1. Rtl specialist or coordinator
- 2. Mathematics teacher
- 3. Classroom teacher
- 4. Special education teacher
- 5. School psychologist
- 6. Interventionist
- 7. Other

Instructional Research Group

THE COMMON CORE IN A NUTSHELL

- 1. Students need to understand reasons for procedures
 - ✓ orally,
 - ✓ in writing,
 - ✓ through diagrams/visual representations

This sets the stage for students being ability at mathematical proof and discussions of mathematical ideas.

Instructional Research Group

11

THE COMMON CORE IN A NUTSHELL (1)

Link between arithmetic and algebra explicit

- Algebra is a general case of arithmetic (in the view of many mathematicians) – ongoing work is to develop this insight
- Much of arithmetic is extension of commutative, associate and distributive properties of addition and multiplication
 – much of the work is to develop these insights
- 3. Heavy emphasis on demonstrating understanding
- 4. Heavy emphasis on visual models and graphic models

Instructional Research Group

COMMON CORE IN A NUTSHELL (2)

- 1. Covers fractions more than 1 and less than 1 concurrently
- 2. Word problems integrated with symbols/operations from the start
- 3. Ideas (concepts) and procedures linked
- 4. Major stress on number line
- 5. KEY ISSUE: how to teach???

Instructional Research Group

the biggest shifts associated with the <u>Common</u> <u>Core State Standards for mathematics</u>, more teachers are now being asked to emphasize fractions as points on a number line, rather than just parts of a whole, to underscore their relationships to integers.

Source: Heitan, L. (2014). http://www.edweek.org/ew/articles/2014/11/12/12cc-fractions.h34.html

Instructional Research Group

1. Asking students to explain reasoning

AND

- 2. Build proficiency with arithmetic computations
- 3. Some research to guide us:
 - ✓ Research of Bob Siegler and colleagues: e.g. Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001).
 ✓ Research by Ken Koedinger and colleagues

 RECAP: HOW TO DO IT (1)
 Frequent use of visual representations especially number line
 Strip diagrams are a great tool for helping students transition to number line.
 Expeditious use of manipulatives also a great tool.
 Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
 Integration of word problems

RECAP: HOW TO DO IT(2)

- 6. Frequent teacher think alouds
- 7. Explicit instruction that helps create the links

Instructional Research Group

8. Students given many opportunities to demonstrate understanding/explain

Instructional Research Group

2

POLL QUESTION: WHICH IS GREATEST CHALLENGE FOR YOU OR YOUR SCHOOL?

- 1. Frequent use of visual representations especially number line
- 2. Strip diagrams are a great tool for helping students transition to number line.
- 3. Expeditious use of manipulatives also a great tool.
- 4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
- 5. Integration of word problems
- 6. Frequent teacher think alouds
- 7. Explicit instruction that helps create the links
- 8. Students given many opportunities to demonstrate understanding/explain

Instructional Research Group

VIDEO EXAMPLE OF EXPLICIT INSTRUCTION

- 1. Links to visual representations and concrete representations
- 2. Thinking aloud
- 3. Note how different this is than modeling a procedure

NB: This is a simulation so there are no students

Instructional Research Group

CORE MATHEMATICS INSTRUCTION What does research have to say about effective Tier 1 mathematics instruction?

DIRECT OBSERVATION STUDY

 A study of direct observation of one day's of mathematics instruction (on average 1 hour 10 minutes) in

First grade: Almost 4000 students in 364 classrooms

Second grade: Almost 3000 students in 269 classrooms throughout U.S.

- ✓ A national sample
- ✓ Curricula used included a wide range (Saxon, Investigations, Mathematics Expressions, Scott Foresman)
- ✓ All Title I

Source: Clements, D. H., Agodini, R., & Harris, B. (2013). Instructional Research Group

WHAT THEY FOUND For first grade, two practices linked with higher mathematics proficiency: 1 Teachers telling students the strategy to use in response to students' work or answers 2 Higher percentage of math instructional time spent in a large-group instruction For second grade: 3 Teachers asking the class if it agrees with a student's answer 4 Number of representations that teachers demonstrate 5 Students help one another understand math concepts or procedures BUT WO LED to DECREASES: E 6 Teachers eliciting multiple strategies or solutions 7 Teachers normpting a student to guide practice or lead the class in a routine Note: Red means linked to earlier discussion

Instructional Research Group

POLL: WHICH FINDING MOST SURPRISING

- 1. Frequent use of visual representations especially number line
- 2. Strip diagrams are a great tool for helping students transition to number line.
- 3. Expeditious use of manipulatives also a great tool.
- 4. Integration of work on mathematical ideas/concepts and procedures (e.g. computation)
- 5. Integration of word problems
- 6. Frequent teacher think alouds
- 7. Explicit instruction that helps create the links
- 8. Students given many opportunities to demonstrate understanding/explain

Instructional Research Group

MORGAN, P. L., FARKAS, G., & MACZUGA, S. (2014). WHICH INSTRUCTIONAL PRACTICES MOST HELP 1ST GRADE STUDENTS WITH AND WITHOUT MATHEMATICS DIFFICULTIES?

- 1. Morgan et al. looked at factors in Tier 1 in first grade that increased achievement of students in the at risk category. These findings have some relevance for Rtl.
- 2. Database was nationally representative.
- 3. Here, teaching practice was from teacher report not direct observation.

Instructional Research Group

RECAP WITH RESEARCH INTEGRATED

- 1. Mix of teacher-directed and student-centered (peer or group activities) instruction seems optimal for average students
- Explicit instruction can, and should, include think alouds. 2.
- 3. Integration of work on mathematical ideas/concepts and procedures (e.g. computation).
- 4. All instruction (explicit and student activities) should include frequent use of a small set of visual representations especially number line
- 5. Strip diagrams are a great tool for helping students transition to number line.
- 6. Integration of word problems with work on mathematical ideas-can be back to back lessons- think alouds or problems assigned can be the links.
- 7. Students given many opportunities to demonstrate understanding/explain. 8. Especially for students in at-risk category plenty of practice necessary to ensure fluent and proficient calculation proficiency and to ensure that mathematical
 - ideas are understood.

Instructional Research Group

41

RELEVANCY

1. Most of this is relevant to intervention

Food for thought: How much to link intervention (Tier 2 especially) to grade level content?

Instructional Research Group

TAKE AWAY

- 1. For students not considered at risk, both teacherdirected and student-centered practices were
 - ✓ Neither all inquiry nor all teacher-directed works best
 - ✓ At-risk learners need more explicit instruction and more practice than others.

Source: Morgan, P. L., Farkas, G., & Maczuga, S. (2014).

42

Webinar Title	Date/Time	Agenda
Rt Principles and evidence base (con) Why start early with Rt? Universal Screening	Tuesday, November 25 th 4:00-5:15 pm EST	 Key Principles of Rtl and Mathematics Importance of mathematics growth in K and 1 Importance of fractions for success in algebra Screening Tools and measures Using Screening Data to Determine Wh0's At-risk Roadblocks & Suggestions

