UNDERSTANDING RTI IN MATHEMATICS

Session 2: Understanding RtI Rtl Framework and Screening

New York State Webinars on RTI Mathematics Tuesday, November 25, 2014 4:00-5:15 pm EST

Russell Gersten, Ph.D.
Director, Instructional Research Group Professor Emeritus, University of Oregon

Instructional Research Group

UPCOMING: SESSIONS 3 \& 4

Webinar Title	Date/Time	Agenda
Effective Instructional Practices in Mathematics for Tier 2 and Tier 3 Instruction	Tuesday, December $2^{\text {nd }}$ 4:00-5:15 pm EST	- What to Teach - Nature of Instruction: Controversies and what we know about the nature of explicit instruction - Intervention Materials/Resources - Roadblocks \& Suggestions
Progress Monitoring and its Use in intensive intervention	Tuesday, December $9^{\text {th }}$ 4:00-5:15 pm EST	

Instructional Research Group

LINKED TO HIGHER MATHEMATICS PROFICIENCY

1. For first grade, linked with higher mathematics proficiency:

- Teachers telling students the strategy to use in response to students' work or answers

2. For second grade: linked with higher mathematics proficiency

- Teachers asking the class if it agrees with a student's answer
- Number of representations that teachers demonstrate
- Students help one another understand math concepts or procedures

3. Linked with LOWER mathematics proficiency:

- Teachers eliciting multiple strategies or solutions
- Teachers prompting a student to guide practice or lead the class in a routine

Note: Red means linked to earlier discussion

AGENDA FOR SESSION 2

Webinar Title	Date/Time	Agenda
EVIDENCE BASE FOR RtI IN MATHEMATICS and Brief Overview of Universal Screening	Tuesday, November $25^{\text {th }}$ 4:00-5:15 pm EST	1. Framework: Evidence Based Principles of Rtl (from the IES Practice Guide) 2. The Need for Preventative Intervention in mathematics - Evidence base (importance of preK to 1) - Fractions as the gateway to algebra 3. Screening - Tools and measures - Reliability, Predictive Validity - False positives and resource allocation

POLL ITEM 1 \& 2:

Morgan, P. L., Farkas, G., \& Maczuga, S. (2014). Which instructional practices most help $1^{\text {st }}$ grade students with and without mathematics difficulties?

When researchers statistically adjusted for pretest score and demographic factors:

1. At risk students did better when

- Teacher-directed practices were used.
- There was more drill and practice.

2. For students not considered at risk

- both teacher-directed and student-centered practices were helpful.

FRAMEWORK FOR MATHEMATICS INTERVENTION

1. Russell Gersten (Chair)
2. Sybilla Beckman
3. Ben Clarke
4. Anne Foegen
5. Laurel Marsh
6. Jon R. Star
7. Bradley Witzel

POLL ITEM 3

Instructional Research Group

POLL ITEM 4

Recommendation	Level of Scientific Evidence
1. Universal screening (Tier I)	Moderate
2. Focus instruction on whole number for grades k-5 and rational number and whole number for grades 4-8	Minimal
3. Systematic, focused instruction	Strong
4. Solving word problems	Strong
5. Visual representations	Moderate
6. Building fluency with basic arithmetic facts	Moderate
7. Progress monitoring of all students receiving intervention or at risk	Minimal
8. Use of motivational strategies	

Instructional Research Group

SCREENING:

DECISIONS, DECISIONS, DECISIONS

1. What grade levels should we begin at?

- Same as reading? Early intervention in primary grades?
- How does algebra readiness and double dose algebra and double dose mathematics in mid school fit in?

2. Should we use the same system as reading?
3. Which are important criteria to look at in tech reports for screeners: predictive validity, concurrent validity, anything else?

EMPIRICAL BASE SUPPORTIVE OF EARLY INTERVENTION

1. It is recent
2. It is becoming every bit as strong as the base for early intervention in reading

15:
hot off the press:

WHAT'S PAST IS PROLOGUE: RELATIONS BETWEEN EARLY MATHEMATICS KNOWLEDGE AND HIGH SCHOOL ACHIEVEMENT: FINDINGS FROM NATIONAL DATABASE

Best predictors of mathematics proficiency at age

1. Growth between entry to K and end of first grade
2. Correlation of almost . 4
3. Statistically significant

Note that correlation of most screeners from fall to spring in one year usually .6. So VERY IMPORTANT TO HAVE 4 over a decade.

Watts, T. W., Duncan, G. J., Siegler, R. S., \& Davis-Kean, P. E. (2014). What's past is prologue: Relations between early
Researcher, 43, 352-360.

Predictive Power of Early Mathematics: Achievement (Morgan, Farkas \& Wu, 2009)

Examined growth from K through $5^{\text {th }}$ grade in nationally representative sample:

1. Low in preK and no growth thru K augurs badly for future success in mathematics (Morgan, Farkas, \& Wu, 2009)
2. Attentiveness (in K) also solid predictor

Note: Both working memory and attention are part of what is called executive functions
Study based on data from 1998 so not contemporary.

```
Instructional Research Group

\section*{CASE FOR EMPHASIZING FRACTIONS}
1. Fractions knowledge (understanding and procedural but especially understanding of the ideas) is critical for success in algebra (National Mathematics Panel, 2009) mathematically.
2. Fractions predictive work of Siegler/Duncan et al (2015) using large data sets supported this empirically.
3. Specifically, fractions knowledge at end of \(5^{\text {th }}\) grade predicted success in \(8^{\text {th }}\) grade mathematics and algebra better than any other measure of mathematics knowledge or achievement.

\section*{MESSAGE:}

DON'T STOP WITH EARLY INTERVENTION IN PRIMARY GRADES

\section*{RELATIONS BETWEEN EARLY MATHEMATICS KNOWLEDGE AND HIGH SCHOOL ACHIEVEMENT}

Longitudinal study of 1,364 students using a nationally representative (albeit imperfect, unlike Morgan/Farkas) from NIH. Watts, T. W., Duncan, G. J., Siegler, R. S., \& Davis-Kean, P. E. (2014).
- Data extends from K-12.

\section*{Key findings:}
1. Mathematics knowledge about entering \(K\) still a sold, statistically significant predictor of how students do in high school mathematics-This is above and beyond family income, IQ etc.
2. Growth between \(K\) and end of 1 st grade is an even stronger predictor of high school mathematics performance!
3. Working memory growth also important.


\section*{RECOMMENDATIONS}
1. Choose not only target grade levels but also key instructional targets.
2. These need to be linked to assessment
3. Recommendations:
- Number sense/number knowledge in primary grades (involving whole number)
- Understanding of- and procedural fluency with fractions (including decimals, proportion, word problems ) in grades 4-7
- Intervene so students can succeed in algebra \(\checkmark\) Requires Tier 1 and Tier 2 work, i.e. time allocation

\section*{POLL ITEM 5:} TRUE OR FALSE (OR RARELY TRUE)
1. Screening measures can provide useful diagnostic information.
2. The best screening measures in mathematics are timed because fluency is so very important.
3. Systems are available for integration formative assessments with screening and progress monitoring measures.
4. Benchmark administration of screening measures in the spring provides useful information on student progress.

\section*{WHAT IS ASSESSMENT?}

\section*{Definition:}

Assessment is the collection of data to make
decisions. (salvia \& Ysseldyke, 1997)
1. To say an assessment is valid, we need to demonstrate Consequentially Validity (Samuel Messick) i.e., we need to show it helps us make socially useful and valid decisions.
2. Assessment is useless if we don' t use it to guide our actions.

\section*{OTHER CRITICAL DECISIONS}
1. Use of timed measures
2. Use of general outcome measures (e.g. magnitude comparison) versus curriculum sampling (e.g. from Standards)
3. Use of number line estimation as a potential screening measure based on very recent research

\section*{DOES YOUR SCHOOL COLLECT DATA TO MAKE DECISIONS OR TO COLLECT DATA?}

\section*{Common pitfalls:}
1. Focus is on procedure
2. Data collected don' t match purpose for collecting data (e.g. collecting diagnostic data on all students)
3. Layering of data sources
4. Different data for different programs (e.g. Title 1)
```

Instructional Research Group

```

\section*{SCREENING ASSESSMENT}
1. Purpose: To determine children who are likely to require additional instructional support (predictive validity).
2. When: Early in the academic year or when new students enter school. May be repeated in the Winter and Spring.
3. Who: All students
4. Relation to instruction: Most valuable when used to identify children who may need further assessment or additional instructional support.

\section*{RECOMMENDATION 1}

\section*{WHAT DOES THE PRACTICE GUIDE HAVE TO SAY?}

Screen all students to identify those at risk for potential mathematics difficulties and provide interventions to students identified as at risk.
```

\checkmark ~ L e v e l ~ o f ~ E v i d e n c e : ~ M o d e r a t e

```

\section*{TECHNICAL EVIDENCE}

Correlational design studies
1. Greater evidence in the earlier grades
1. Reliability typically included inter-tester, internal consistency, test-retest, and alternate form - Most fall between \(\mathrm{r}=.8\) to .9
2. Validity primarily focused on criterion related with an emphasis on predictive validity
- Most fall between \(r=.5\) to .7
3. Measures are beginning to report on sensitivity and specificity

Instructional Research Group


\section*{CONTENT}

\section*{FEATURES}
1. Short duration measures (1 minute fluency measures)
- Note many measures that are short duration also used in progress monitoring.
2. Longer duration measures (untimed up to \(20-30\) minutes) often examine multiple aspects of number sense and number knowledge
1. Most research examines predictive validity from Fall to Spring.

\section*{EXAMPLES: SINGLE ASPECT NUMBER SENSE}

Example: Magnitude comparison


Example: Strategic counting


Instructional Research Group

\section*{SAMPLE ITEMS FROM NUMBER SENSE BATTERY}
1. What number comes two numbers after 7 ?
1. Which is bigger: 7 or 9 ?
1. Which is smaller: 8 or 6 ?
1. Which is smaller: 5 or 7 ?
2. Which number is closer to \(5: 6\) or 2 ?

\section*{MAJOR ISSUE TO CONSIDER IN SELECTING SCREENING MEASURES}
1. Screening measures meant to be efficient.
2. In 1980s and 1990s, brief timed measures deemed most efficient.
3. With widespread availability of technology, this issue MUST BE REVISITED. this issue MUST BE REVISITED.

\section*{NUMBER SENSE SCREENING BATTERY}

The items assess counting knowledge and principles number recognition, number comparisons, nonverbal calculation, story problems and number combinations (basic addition and subtractions facts)

The measure is reliable, with a coefficient alpha of . 84
Developed by Nancy Jordan and colleagues.
Jordan, N. C., Glutting, J., \& Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and individual differences, 20(2), 82-88.

Instructional Research Group

\section*{THE NUMBER LINE TASK}
1. "Where does 87 go?"
2.
3. 0

1000

\section*{Instructional Research Group}

\section*{CURRICULUM SAMPLINGS: COMPUTATION OBJECTIVES}
1. For students in grades \(1-6\).
2. Student is presented with 25 computation problems representing the year-long, gradelevel math curriculum.
3. Student works for set amount of time (time limit varies for each grade).
4. Teacher grades test after student finishes.
E.g., AIMSweb, Easy CBM, DiBELS Mathematics (in advanced field test phase)

\section*{CURRICULUM SAMPLING : CONCEPTS AND APPLICATIONS}
1. For students in grades \(2-6\).
2. Student is presented with \(18-25\) Concepts and Applications problems representing the year-long grade-level math curriculum.
3. Student works for set amount of time (time limit varies by grade).
4. Teacher grades test after student finishes.

\section*{EASY-CBM: NUMBER AND OPERATIONS}


Instructional Research Group



\section*{SECONDARY EXAMPLE: ALGEBRA FOUNDATIONS}
1. 42 items ( 50 points); 5 minutes
2. Problems represent five core concepts/skills essential to conceptual understanding in algebra
- Writing and evaluating variables and expressions
- Computing expression (integers, exponents, and order of operations)
- Graphing expressions and linear equations
- Solving 1 -step equations and simplifying expressions
- Identifying and extending patterns in data tables

\section*{SUGGESTIONS}

Have a building level team select measures based on critical criteria such as reliability, validity and efficiency.
- Team should have measurement expertise (e.g. school psychologist) and mathematics (e.g. math specialist)
- Set up a screening to occur twice a year (Fall and Winter)
- Be aware of students who fall near the cut scores

\section*{SUGGESTIONS}

In grades 4-8, use screening measures in combination with state testing data.
1. Use state testing data from the previous year as the first cut in a screening system.
2. Can then use a screening measure with a reduced pool of students or a more diagnostic measure linked to the intervention program for a second cut.

Note: This is rarely done. Reading research suggests it could be more accurate and once a formula is worked out, easy to implement.

\section*{ROADBLOCKS}
1. Questions may arise about testing students who are doing fine.
2. Suggested Approach: Screening all students allows the school or district to evaluate the impact of instructional approaches
- Screening all students creates a distribution of performance allowing the identification of at-risk students
- You may also wish to choose your battles

\section*{SPECIFICITY}
1. Set your cut score too high and
- All kids that need help are identified) but poor specificity (lots of kids who don't need help are identified)
2. Set your cut score too low and
- You have good specificity (most kids who don't need help will not be identified as at-risk) but you may miss many kids who do need help

\section*{ROADBLOCKS}
1. Resistance may be encountered in allocating time resources to the collection of screening data.
2. Suggested Approach: Use data collection SWAT teams to streamline the data collection and analysis process.

\section*{ROADBLOCKS}
1. Screening may identify large numbers of students who need support beyond the current resources of the school or district.
2. Suggested Approach: Schools and districts should - Allocate resources to the students with the most risk and at critical grade levels
- Implement school wide interventions to all students in areas of school wide low performance (e.g. Fraction magnitudes)
- Monitor progress of students just above and below benchmaker
```

Instructional Research Group

```
```

Instructional Research Group

```
Instructional Research Group

\section*{SPECIFICITY REFERS TO FALSE POSITIVE}
(I.E., WASTED RESOURCES: ROWS 1 AND 2)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Example } & \begin{tabular}{c} 
Hit everyone who \\
needs help
\end{tabular} & \multicolumn{1}{c|}{ Specificity } \\
\hline CBMCBM Mathematics (30 min, computer) & 0.93 (in one state) & 0.65 \\
\hline \begin{tabular}{l} 
AIMSweb Mathematics Concepts and Applications (18 \\
min, group administered, computer scored)
\end{tabular} & 0.80 & 0.68 \\
\hline \begin{tabular}{l} 
AlMSweb Quantity Discrimination (2 minutes, individual \\
administration) K version
\end{tabular} & 0.50 & 0.92 \\
\hline \multicolumn{3}{|c|}{ Note: Predictive Validity Always Weakest in Kindergarten } \\
\hline \begin{tabular}{l} 
Formative Assessment System for Teachers: (20-30 min \\
per student on computer
\end{tabular} & 0.77 & 0.80 \\
\hline
\end{tabular}

\section*{WHAT IS COMMON PROBLEM}
1. Cut scores set so low.
2. Early belief that no one should fail.
3. Result in lost resources since services given to students who required nothing.
4. Often prevented services in reading from going to upper grades.
5. Now: test developers sometimes more alert to this issue of balance

\section*{HOW TO START AND NEXT STEPS}

As you get started, consider:
1. Focus on one grade or grade bands
- Long term trajectories suggest end of K critical benchmark (remember the research of Duncan and Morgan on growth during K)
2. Seriously consider use of computer managed and computer administered instruction
3. Consider adaptive testing

\section*{Instructional Research Group}


\section*{DECISIONS, DECISIONS, DECISIONS (REVISITED)}
1. What grade levels should we begin at?
- Same as reading? Early intervention in primary grades?
- How does algebra readiness and double dose algebra and double dose mathematics in mid school fit in?
2. Do we have a general outcome measure as strong as oral reading fluency?
3. Which are important criteria to look at in tech reports for screeners: predictive validity, concurrent validity, anything else?

\section*{Instructional Research Group}

\section*{CITATATIONS}

American Institute for Research. (n.d.). Center on response for intervention. Retrieved from
http://www.rti4success.org/resources/tools-charts/screening American institute for Research. (n.d.). Center on response for intervention
http://www.rti4success.org/resources/tools-charts/screening-tools-chart

Clarke, B., Nese, J. F., Alonzo, J., Smith, J. L. M., Tindal, G., Kame'enui, E. J., \& Baker, S. K. (2011). Classification accuracy of easyCBM first-grade mathematics measures: Findings and implications for the field. Assessment for Effective Intervention, 36(4), 243-255.
Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., \& Witzel, B. (2009). Assisting students struggling with mathematics: Response to Intervention (Rti) for elementary and middle schools (NCEE 2009-4060). Washington, DC: National Center for Education Evaluation and Regional Assistance, nstitute of Education sciences, U.S. Department of Education. Retrieved from
http://ies.ed.gov/ncee/wwc/pdf/practice_guides/rti_math_pg_042109.pdf

Jordan, N. C., Glutting, J., \& Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and individual differences, 20(2), \(82-88\).

Jordan, N. C., Glutting, J., Ramineni, C., \& Watkins, M. W. (2010). Validating a number sense screening


\section*{QUESTIONS?}

\section*{THANK YOU!}

AND HAVE A GREAT THANKSGIVING \& BEST WISHES TO FOLKS IN BUFFALLO AREA DURING THIS DIFFICULT TIME```

